Please download and install the latest web browsers to have better performance. Get Firefox Firefox Get latest Internet Explorer Internet Explorer

Mol Imaging Biol. 2015 Dec;17(6):770-6. doi: 10.1007/s11307-015-0841-9.

In Vitro Evaluation of Gd(3+)-Anionic Linear Globular Dendrimer-Monoclonal Antibody: Potential Magnetic Resonance Imaging Contrast Agents for Prostate Cancer Cell Imaging.

Mirzaei M, Mehravi B, Ardestani MS, Ziaee SA, Pourghasem P.
PMID: 25917749


Early stage prostate cancer diagnosis is of high global interest. Magnetic resonance imaging (MRI) is a non-invasive modality for early cancer diagnosis, in particular for prostate cancer detection. The research aim is to synthesize a nanodendrimer and its conjugate with C595 monoclonal antibody (mAb C595), against prostate cancer, followed by its chelating with Gd(3+).


Anti-MUC-1 mAb C595 was conjugated to an anionic linear globular dendrimer (ALGDG2). The polyethylene glycol core and citric acid shell were synthesized followed by loading with Gd(3+) to make novel contrast agents for functional MRI. The in vitro behavior and MRI parameters of the nanoconjugate were investigated performing several studies such as cell toxicity and TNF-alpha evaluations. The investigation of magnetic resonance imaging parameters indicated how well nanoconjugate performs in (1)H-NMR and (17)O-NMR in vitro.


Results showed a potential specific MRI activity by improving the swelling responses cell binding. The MTT (2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide) assay demonstrated that this contrast agent had significant cytotoxicity on prostate cancer cells.


These results showed that Gd(3+)-ALGDG2-C595 is a potential prostate molecular imaging agent and could be considered as an ideal functional nanoprobe. Additionally, further investigations by clinical trials are in the pipeline.


Anionic linear globular dendrimer; C595; MRI; MUC-1; Prostate cancer

Publication Date: 12/17/2015